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COINCIDENCE COUNTING AND RENEWAL RUNS 

D. P. Oaver, Jr. 

1.  Introduction and Problem Description 

In a Stanford technical report, [ 6],  Zweig describes probability 

models for various aspects of the photographic detection process.  In 

particular, a model is postulated for the process by which a chemical 

particle (silver halide grain) becomes a "developable speck" under the 

influence of photons acting upon it at random times. A brief account of 

the latter physical process is as follows: A particle may be in one of 

R + 1 distinct energy states, labelled, in order of increased energy, 

Sr.» si* ••• SD; for simplicity these states will simply be denoted by the 

integers 0, 1, ... R. The particle's transitions between states are 

induced by light particles (photons)which impinge upon it; the time between 

arrival of consecutive photons is the random variable a. The interaction 

between the photons and the particle is such that if the particle is in 

the lowest en. rgy state, 0, then a new photon causes it to jump to state 1. 

It remains there until either a temporary activation time, T., elapses, 

or a new photon hits it, whichever event occurs first. If the temporary 

activation time terminates before another photon appears, the particle 

reverts to state 0.  If the new photon arrives before T. after the first 

photon, the particle jumps to state 2, a new temporary activation time, 

T , is initiated, and the process begins as if from scratch, but starting 

from state 2.  It is apparently in accord with physical understanding to 
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pcntulate that if a particle occupies any state up to and includlnß R-l 

then transitions will occur either to the next higher state, or all the 

way back to 0, depending upon the rapidity with which one photon follows 

the next. In contrast, state R is "absorbing", in the sense that a 

particle that reaches R remains there indefinitely. The physical 

interpretation of the latter event Is that a particle in state R is a 

permanent "latent image specie", and becomes visible if exposed to develop- 

ment, i.e. chemical treatment. We study here the distribution of T,^., 
OK 

the time until particle energy first reaches state R, starting from state 0. 

Since the activation of the particle — the occurrence of a "count"  — 

Is  the result of coincidence of the photons,   the process studied will be 

called coincidence counting. 

Various probabilistic formulations of the latter problem are 

possible.    That of   ( 6 ]  is  to suppose that the photons appear according 

to a stationary Poisson process, and that each temporary activation time, 

T,   resulting after a new Jump is an Independent random variable possessing 

a density.    Using these assumptions,   [ £ ] determines the  transform of the 

distribution of the random time,  T.^,  described above.     This paper 

relaxes the assumptions of  [(p],  replacing the assumption of Poisson- 

arriving photons by that of a general renewal process.     The model of the 

present paper is an example of what Levy and Smith have called semi-Markov 

processes; a comprehensive discussion of such processes has been given by 
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Pyke In (Ä 1 and [ J ], and our results can be derived by following the 

latter route.    However, In order to keep the exposition self-contained 

and to show clearly all of the process components, we have chosen to 

argue directly and not to use the general theory. 

Although the model outlined above was developed for a specific 

physical problem,   it has possible Interpretations in other fields.    For 

example,  It is tentatively suggested that the mechanism describes the 

process of learning certain skills.    Suppose that a particular skill 

is only needed at random time intervals of duration a, and that the organism 

possesses a temporary skill retention time T.    Thie means that in general 

a skill is retained for a time T following its last use,  but that if the 

skill is not required again during T It Is forgotten and must be relearned. 

The exception is that if a critical number of needs for the skill develop 

in rapid succession, e.g.  If R-l uses are made of the skill,  no two of 

which in succession are separated by more than T,  then the skill is 

permanent, and will not be forgotten.    Thus the random variable T R represents 

the time until the skill becomes permanent. 

It is interesting to compare the model outlined with the classical 

theory of runs for Bernoulli trials;  see (Feller [I], p.  299 ff.). 

If we define a renewal run of length r to be an uninterrupted sequence of 

inter-event (photon arrival) times,  each of which is shorter than T,  then 
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we are eBsentially interested In the distribution of the time until the 

termination of the first renewal run of r = R-l.    Various of our results 

are similar    to known results in run theory.    Details are given in 

Sec.  3. 

The present model may be modified to describe energy transitions 

down by only one step instead of all the way to zero.    This is done in 

Sec.  U; assuming that photons arrive according to a stationary Poisson 

process. 

2.    A Probability Model 

Let S(t) be the energy stats of a particle at time t; S(t) assumes 

the values 0,  1,  2,   ..., R.    The random process ^(t),  0<t<oo  y may be 

specified in terms of the time sequence (of photon arrivals) lt., 1=1,2,...!- 

as follows 

S(t)  = 

for 

for 

for 

for 

0 < t < t. 

(2.1) 

t. < t < min(t.+T.,t.  ,) 

Vl - * < niin^VTi'ti+2); i=1>2>-" 

VTi ^ t < W 

The arrival times t.  (0 < t, < t   < ...) may be written as 
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J 

J=l 

where   -{a,,  J=l,2;...>- is a renewal process: a sequence of Independently 

distributed positive random variables,  Identically distributed according 

to the arbitrary distribution function (henceforth abbreviated d.f.) 

H')i  FCO-O = 0| a. may be referred to as the J-th inter-event time. 

The moraents of a. will be assumed finite.    To simplify the arguments we 

shall take all temporary activation times to be the same:   T.  = T, a 

constant independent of 1.    This assumption may be relaxed, and the 

results of doing so will be mentioned occasionally, under the hypothesis 

that -IT.)- is a sequence of Independently and identically distributed 

positive random variables. 

The primary purpose of the argument to follow is to characterize 

(by Laplace-St ieltjes transform) the d.f.  of the fixation,  or absorption, 

time,  T„..     Hie latter is the first-passage time from State 0 to State R: 

T0R = mln(t:  S(0) = 0,  S(t) = R)  . (2.5) 

It will then be possible to derive moments of the latter time, and, at 

least in principle,  to exhibit the explicit d.f.  of T    .     In the course of 
OR 

the derivation to be given it is convenient, and possibly informative,  to 

examine some auxiliary events and random variables.     Iliese will be 

introduced in what follows, and a final synthesis made to find the d.f.  of T OR* 
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(a) Pre-absorption energ,  maxima 

Prior to the time T.«,  at which absorption occurs,  the particle 

may visit each of the intervening states 0, 1,  ..,, R-l a number of times, 

each time dropping to 0 and starting afresh before finally reaching R. 

Following each return to 0 the particle eventually Jumps to 1.    Features 

of the particle's sojourn in States 1,2,...,R-1 will be treated here first. 

Let t(ljk) denote the photon arrival time immediately following 

which the particle is in state 1 for the k-th time.    Thus,  in terras of 

see  (2.2), H' 
t(l;l) = t1 (2A) 

t(ljk+l) = min it :  ti >  t(l;k) and SCt^) = l|'. 

Let A (k) denote the event that the particle reaches state n, but not n+1, 

following t(l)k). Then 

Pn(k) = P[An(k)] = P(M(k) = n]; (2.5) 

where 
M(k) =    max     S(t) (2.6) 

t(l;k)<t<t(l;k+l) 

It follows from (2.1) and the independence and identical distribution of 

the inter-event times that 
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Pn(lc) = y^PtCjCk) < T] ?[a^k) > T) = [P(T)Jn"1lX.P(t)], n=l,...,R-l 
n 

PR(Jc) = ^ P^dc) < T] = [PCT)]^
1 (2.7) 

where a.(lc) denotes the J-th Inter-arrival time following ;(1}K). 
J 

If T. is a sequence of positive independent random variables 

with d.f. G(')* then (2.7) ie replaced by 

VnW  = [F ^[l-P ]    n = 1,2,...,R-1 
n      G      G (2.8) 

PR0c) = l?^'1 

where 
oo 

F^ =  T [l-G(x)]dF(x) (2.9) •»■I 
Since   p 

^ VnW    = 1, (2.10) 

n=l 

absorption in state R occurs after t(l)l), t(lj2),...t(l;k),... Each time 

particle energy reaches state 1 an independent trial occurs — one that 

culminates either in absorption in R, or in return to 0 and a new start 

after reaching state 1 again.  Letting K denote the trial number on which 

absorption occurs, we have from the above that 

P[K= j] = (l-F^V-1 F^1,        J=l,2,..., 

E[K] = F1"* (2.11) 
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Finally, let M(k) be the conditional random variable vblch equals 

M(k) given that the latter Is not greater than R-l; M Is a pre-absorptlon 

energy maximum.    Clearly 

P[M(lc)=n]    =    P[M(lO=n|M(k) < R-l]    =    P[M(k)=n|K >k] 

= R,^1^^ n=l,2,...,R-l (2.12) 
1-r 

(b) Activation periods 

It Is useful to define the duration of an incomplete activation 

period; 

I(k) = inf it: S(t(l|k) + t) = 0, t < co I 
I J (2.13) 

= inf |t:  S(t(l;k) + t) = 0, k < K I . 

l(k) is a random variable representing the period of time that elapses 

from an instant (the k-th such) immediately following which S = 1 until 

the energy state next drops to 0, having avoided absorption at R.  In 

terms of our inter-event times, and temporary activation times, 

M(kj-1 

I(k) =  y  ^(k) + T (2.14) 

where ß.(k)  is the duration of the J-th inter-event time following t(l;k), 
J 

given that the inter-event time is shorter than the temporary activation 
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time T. hence the sum is to be interpreted as zero if M(k) = 1. We have 

F(x 

Ptßj < x] = | 
F(T} (2.15) 

1    ,   T < X, 

and f e' xdF(x) 
sß     ' * 

^"°PJ1 - 0  F(T)     -W- 
(^•l6, 

We shall later require a random variable,    7, bearing relation to the 

inter-event time a in a manner complementary to ß; 7.   is the excess of 

the duration of the first inter-event time following t(ljk) which is 

longer than the corresponding temporary activation time.    Its distribution 

is 

Pt\S=0   -   r^,) F(T' ,    0<x (2-17) 

jr 00 

-87, ST     L        -SX,-/    v 
E[e      ^    =    

e      ^    e      ä*i*l    . (2.1Ö) 
1-F(T) 

The Laplace-Stieltjes transform of the d.f.  of l(k) may be written down 

directly,  using conditional expectations: 

n-1 

E[e"sIM|M(lO=n] = exp[-8T + 8 )    ß J « = 1,2,...,R-l 

J=1 (2.19) 
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Now use (2.11) to remove the condition: 

Ele-81^]    =   J  Pn(k) E(e-8l(^|S(k) = n] 

n=i (2.20) 

_  "f  c>8Ti(s;T)     ^  F^l-F) 
-   /.   e       l    F        J ^-1    ' 

n^l 1 F 

e-aT(l..F)   ri-[F(B;T)rX   | 

l-F^"1       I  1-F(8:T) / 

H In the event that   <T,>-    is a sequence of independent r.v,  then 

r00 r T* -»«-I 
/     e"8X[l-F(x)]dG(x)   /I- j j    e-8x[l-G(x)]dF(x)| 

^•-6l(k))- l-F R-1 V f" 
0 V-i     e-8x[l-t -G(x)JdF(x) 

(2.21) 

this latter expression follows by conditioning according to the values of 

T. as well as M.     It can be seen to reduce to (2.20) when 0(x) is 
J 

degenerate,  concentrating at T. 
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A complete activation period) C,  is defined as follows: 

C = infjt:    S(t(l;K) + t)  = RT ; (2.22) 

C is the time required for the energy level to pass from state 1 to R 

without any intervening sojourns in state 0. Alternatively C may be 

expressed as 

R-l 

C    = 

J=l 
I "V (2-23) 

it then follows immediately that 

^-scj   =   ilLnjl]
R-1  . (2.2ll) 

In the event that   ■{ T  f are distributed according to G(*), 

I      e-SX[l-G(x)]dF(x) R-1 

E[e"3C]    =     J— =;  (2.25) 
FG 

(c) First-passage time, T 

Using the ingredients described above it is seen that the 

desired first-passage time may be expressed as 

K-l 

T0R = o^ + J_ [7k+ I(k)] + C (2.26) 

Given the value of K, T-« is seen to be a sum of independent random 
Un 

variables, so 
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-sT 
E[e      0B|K=M    =    E{e-fla)[E(e-8'')E(e-8l)]k-1

e-8C. (2.27) 

When one removes the condition by use of (2.11): 

'8TnR V1 "
8T

OR 
E[e      0K]    =    )    E[e      0K|K=k] P[K=k] (2.28) 

k=l 

the result is, after substituting and summing the geometric series, 

-sT, 
E[e m]    =    E(e-8a) E(e-9C)  F^ # (2>29) 

l-E(e"S7)E(e'Sl)(l-FR"1) 

If the previously obtained expressions for the component expectations 

are substituted and some simplification made. 

sT ^ 
E[e  0R] =  (re-SXdF(x) 

e"SX dv(x) 

00 ,   , AT  -SX.„/ x ,R-1 

je'3X  dF(x)  | 

1 - io   e-
8x dF(x) 

3. Some Expected Values and a Limiting Distribution 

The various component probability distributions and transforms 

derived in (a), (b), and culminating in (2.50) of (c) above, 

solve in principle the problem posed.  In order to help the intuition in 

dealing with these expressions a few expectations will be presented. 
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Alao ,   a limiting distribution for T     will be derived. 
On 

A.    Moments 

Expressions (2.5) and (2.8) give the probability distribution of 

the random variable M(lc):    the maximum state reached in a single (the k-th) 

sojourn in positive states.    The generating function of M(k)  is easily 

computed from (2.8), and from it 

E(M(k))     =   -r-^ ; (3.1) 
1'FG 

clearly the latter approaches R as F_ Increases» as it should, 
G 

Since the trial number, K, on which absorption occurs is again 

geometrically distributed, by (2.11), a generating function is imroediately 

obtained; from this, or directly, 

E[K] = Fj"R (3.2) 

Similarly, the expected single-trial pre-absorption energy maximum 

M(k), has a truncated geometric distribution, (2.12), and 

1 - R F*"1 + (R-l)F? 
E[M(k)] = ^ ^^ S  . (5.3) 

(l-F^d-^-1) 

From (2.11) and (2.12) another piece of supplementary information is 

available:    the distribution of highest state reached before absorption 

In state R.    This is simply the d.f.  of the unconditional pre-absorption 

energy maximum,  denoted by M^ when absorption level is R. 
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A conditional argument gives 

PJMR < n}    s    FG"1'n n =  0,1,...,R-1 O.k) 

and the first moment is 

E(n )    =   R 5   . (}.5) 

Finally, differentiation of (2.50) gives the expected value of 

the first-paasage time: 

E(T.R)    =   E(a) • -Sj  3.6) 

B.     Limiting Exponential Distribution for T0R 

It is apparent that E(T-D)  increases with R. and with decreases 
UK 

in F_: for fixed F the latter behavior occurs if T becomes small or if 
G 

G( *) concentrates near zero.  It is of interest to establish a limiting 

distribution for the scaled random variable 

It will now be shown that under general conditions 

P|TOR < t E(T0R)| -^ 1 - e^        for    t > 0 (5.7) 

as E(T0R) —^ co . 
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Verification of (5.7)  follows from (2.29) and the continuity 

theorem for characteristic functions.    The characteristic function of 

T*      -    T    rE(T    )]'1 

OR OR1  v  or/J 

is obtained from (2.29) by simply replacing s by 

-UlECT^)]-1. 

Now it is easy to see (for example, from (2.23), (2.1U), and (2.15)) 

that the random variables C and I are with probability one, both bounded 

above by (R-1)T.  From this it follows that 

C[E(T Jf1 < (R-1)T ^^ ^"V) (5-Ö) 
1 -AT) 

and,  since we are assuming that 0 < F(T) < 1 for T > 0,   the right hand side 

tends to zero as either R —^ oo     or T —> 0,   hence 

E exp(i£C[E(T0R)]"1) -^ 1, 

uniformly in any finite ^-interval enclosing the origin.     Similarly, 

E exp(i5a[E(T0R)]"1) -^ 1. 

Next, 

E(exp ii r[E(T0R)]-1)  . 1 +  U E(7)[S(T0R)]'1 +  r^ |) 

and (5.9) 

E(exp i|  I[E(T0R)]'1)  = 1 +  i|  E(I)[E(T0R)]'1 +  r2(0. 
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where the remainders r,({) and r„( 0 are bounded In absolute value: 

1(0,< i! _J(z^ < i! Hh w^'V    ty(T)] 
1     '     ^    [E(T0Jr     2    E^(a) [l-Ax)]2 

0R
 (3.10) 

|rU)|  ^(R-^V^T)]
2
^^!!^!)]

2 

E (a)     [I-F'CT)] 

Note that  jr^Ol  and  |r (5)|  both tend uniformly to zero for all | in 

any finite  interval enclosing the origin as either R —> oo  for fixed 

T > 0,  or T —> 0 for fixed R > 2.     It then follows by expanding the 

denominator of (2.29) and using (3.9) and (3.10) 

E exp(U TOR^VJ'
1
) ""■* I^lT    ' (3,11) 

the characteristic function of the exponential distribution with unit 

mean,  as E(T    ) —> oo.  where the latter limit is the result of either 

letting R —> oo   for T fixed,   or T —5» 0 for any fixed R > 2.     By the 

continuity theorem for characteristic functions, (3.7) follows. 

The above result suggests  that if we modify the model so that 

when state R is reached the process  state immediately reverts  to zero, 

from which point the process starts over,   then the distribution of the 

number of renewal runs of length R-l accumulated in time  t*  =   t c^T-^) 

tends to the Polsson: 

-■hit1 1 -t tn 

nl-   =   e     77 n - 0,1,2,... (3.12) 
>      , 
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as either R —^ oo or T —>  0 , 

The strong resemblance between the present renewal run process 

and classical runs in Bernoulli trials has been mentioned earlier. 

Let the event that an inter-event time a is less than the corresponding 

temporary activation time T be called a "success", and the complemertary 

event a failure, so F(T) or F_ is the probability of a "success". Then 

if the renewal run process is started from state 1 the expected time until 

a run of length r=R-l occurs is, from (3.6), 

E(T1R) = E(a) • A. E(a) = E(a) • $— , (3.13 ) 
1R F

G -1 *>'*J 

and if E(a) = 1 this is the expected recurrence time of runs of length r, 

as given by Feller ([ 1 ], (7.7) P. 300). Similarly, if we consider the 

model, modified as described above by throwing away the initial time to go 

from 0 to 1, our previous argument shows that 

PJT^ < t E(T1R) } ^ 1 - e"* (J_lM 

as R —> oo, and consequently the distribution of the number of renewal 

runs in time t' = t E(T1R) tends to the Poisson with unit mean. This 

result is entirely comparable to the Poisson distribution for long runs 

in Bernoulli trials; see Feller ( ( 1 ], p. 310, problems 25 and 26). 
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k.    A Modified Model 

The model for energy state transitions specified by (2.1) permits 

state Jumps either up by one unit, or down to state 0,    As an alternative 

one may contemplate a process that permits transitions either up or down 

by one unit.    Transition up by one unit is the result of a photon arrival; 

transition down by one unit occurs if no new arrival has occurred for a 

(random and independent)  time period T that begins immediately after the 

last transition, whether the latter was up or down;  no down transitions 

are permitted from state 0,  however. 

Analysis of the process described is difficult for generally 

distributed inter-event times, a, because of the absence' of convenient 

regenerative properties when down Jumps occur. In our earlier model a 

down Jump always terminated at zero. Analysis of the present model is 

rendered complex because the distribution of the excess occurring on the 

occasion of a downjump in goieral depends upon details such as the number 

of down Jumps following the last arrival. 

If, however, we consider the special case of stationary Poisson 

photon arrivals -- perhaps the most plausible physical assumption in any 

case —  the above difficulty vanishes because of the characteristic 

memoryless property of the Poisson.    When the latter is in effect 

convenient regeneration points occur just following each state change.  Let 

Fl x) = 1 - e"^ X > 0 {h.l) 
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denote the exponential d.f.   of a, a generic inter-event time.    If 

t',   1 = 1,2,... i- is the sequence of times at which transitions -- either 

unit up or down Jumps -- occur,   then 
I 

,00 

Pk = P- 
,|s(tj+1 +) = k-fl|s(t»+) = k| =    f   [l-G(x)Je"Xx Xdx 

(^.2) 
,00 

qk = P{s(t'+1 +) = lc-l|s(tj-f) = 4 = J     e*XjC dG(x) 

where p. = 1,  P.+q, = 1.     In words,  p    is the probability that a transition 

is an up Jump,  and q    the probability that it is down.     For the present 

process the probabilities p.   and q   are independent of 1c,  but this need 

not be true in general.    We shall also be interested in the sojourn times 

of the process in the various states:    an up sojourn time,  S^  ',  is the 

time spent in state k, given that the next transition is to k+1; a down 

transition is to k-1.    The distribution functions of these variables are 

sojourn time,  S^    ,   is the  time spent in k,  given that the next 

Uk(z) = P[S^u)< z] ' P[tJ+1-t' < z|S(tJ +)  = k,  S(tJ+1 +) = k+1] 

Dk(z)  = P[S^;< z] * P[tJ+1-t: < z|s(t'  +)  = k,  S(t'+1+) = k-1]. 

In the present model 

z 

Ujz) 0 

[l.G(x) ^"^dx ih.k) 

V    ' -O) 

0 
[l-G(x)]e"XxXdx 
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j   e'^d G(x) 
y0 

e"Xxd G(x) 

A process of the type described may be called a  a-mi-Markov 

birth r.nd death process;   cf.   Pyke   [2 It   [3 ] an^ Smith   [S ]>  for formal 

definition of the general S.-M.P.     For present purposes  it is sufficient 

to remark that the time to absorption in state R may be expressed as 

follows  for the S.-M.  birth and death process: 

T0R    =    A0 + Al+   ••'   + Vl (4-5) 

where -sA  >■ is a sequence of independent random variables;  A    is the first- 

passage  time  from state k to state k-tl: 

A    = infjt:  S(t!+t)  = k+1,  given S(t' + )  = kl    . (^.6) 

From the regenerative property of the process it is evident that A^ may 

usefully be expressed as 

J 
Ak    =   J   [Skd)(n)  4  Ak-l(n)] + S[U)(J+1) M) 

n-0 

where -i S*.  '(n)V is the sequence of independent and  identically distributed 
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sojourn durations In state k that terminate in transition down to lc-1; 

{Vl(n)} 1' the corresponding sequence of Independently and identically 

distributed first-passage times up from lc-1 to kj  sj"   ' is the duration 

of the final sojourn in k leading to transition up to k+1; J is the 

random number of sojourns terminating in down transitions before the 

eventuEi. Jump up to J+l.     Now if we condition on J we have by Independence, 

-sA ,      .as[d) -sAv , i        -sS^1 

E(e      K|J]    =    JE[e      R    ] E[e      ^jj E[e      K    ] 

-sA       J 

=    |DK(S) Ele"    ^jju^s) (U.8) 

where U, (s) and D (s) represent the Laplace-Stieltjea transforms of 
K K 

U. (x) and Djx).    Since 

removal of the condition on J leads to 

-8Ak                   pk ^^ E(e      k]    =     *_JS           . (4.10) 

1  - (^ Dk(8) E[e      k 1] 

Since there are no down Jumps from k = 0, A- is simply the duration of 

the sojourn In state 0, presumed known. Hence in principle one may 

proceed by induction to find E[e   ] explicitly.  Finally, by Independence 
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E[e      ^J    -      []   E[e      ^J    . (U.ll) 
lc=0 

Observe that all of the above formulas specialize easily to simple random 

walks and blrth-and death processes by appropriate choice of sojourn 

distributions.    In the latter cases they provide convenient means for 

computing first-passage times  In queues, etc. 

The expression (U.10) may be differentiated bo generate moments 

of A.;  the moments of TOR may similarly be expressed in terms of the 

latter by way of (U.ll).     We have in general 

(U.12) 

EIA*J  '     h     \   Vi     VK-I     V2  +"'*A-i-hE[3o] 

where 

El3k]   =    ^E[S^U)]  + qkE[s[d)]    . (U.15) 

Returning now to our physical model we note from (U.2) and (h.k)  that p 

and E[S   ] are independent of 1c.     In fact 

pk = l-G(X),  q^ = 0(X) 

P0=l,      E[30]    .   i    . 

K—J.^ c^ • • • 
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From (V.12)  there results 

E(A01    -    ^ 

-1 E^]    =    X^ 

k+l 

1 - 
l-G(X) 

y 

and finally by summation 

EtT^l-X 
1 1-G(X) i      l-G(X)       'l-GCX^ 

f   G(X)    1 

l-G(X) J 

n 

(U.lU) 

(U.15) 
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